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What is a reference? 



References vs. Objects 

● An object is the actual instance of the class 
stored in memory 

● A reference describes the location in memory of 
a particular object 

● A class is a blueprint for creating an object 
● To actually create an instance of a class we use 

a constructor with the new keyword 



Sample Student Class 
● Here is an example of a Student class we will use 

for demonstration: 
public class Student 
{ 
   private String name; 
 

   public Student() 
   { 
      name = ""; 
   } 
 

   public Student(String n) 
   { 
      name = n; 
   } 
} 

Default 
Constructor 

Initialization 
Constructor 



References vs. Objects 

● Here is an example of a reference: 

Student S1234; 

● At this point it does not store the location of an 
object 

●It points to a null location 

● To create an object we need to instantiate it: 

S1234 = new Student("Joe"); 

Reference Constructor call 



References vs. Objects 
Student S1234; 

S1234 = new Student("Joe"); 

S1234 null 

S1234 A Student 
name Joe 

Reference Object 

● What is name? What is Joe? 



Aliasing 

● Recall that there can be more than one 
reference to a given object 

● Each reference is called an alias 
● It is very important you understand the potential 

problems when there are multiple references to 
the same object 



Aliasing with Objects 
Student S1234 = new Student("Joe"); 
Student S2345 = S1234; 

S1234 A Student 
name Joe S2345 

S1234.setName("Jane"); 
System.out.println(S1234.getName()); 
System.out.println(S2345.getName()); 

Output 

Jane 
Jane 



Aliasing with Arrays 
int[] arr = {1,2,3,4}; 
int[] temp = arr; 

arr 

temp 
temp[2] = 8; 
arr[1] = 7; 
System.out.println(Arrays.toString(arr)); 
System.out.println(Arrays.toString(temp)); 

Output 

[1,7,8,4] 
[1,7,8,4] 

0 1 2 3 

1 2 3 4 



Aliasing with Strings 
String one = "Hello!"; 
String two = one; 
System.out.println(one == two); 
System.out.println(one.equals(two)); 

Output 

true 
true 

● In this case both references point to the same 
String 

● This means == and equals will both be true 



Aliasing with Strings 
String one = "Hello!"; 
String two = "Hello!"; 
System.out.println(one == two); 
System.out.println(one.equals(two)); 

Output 

true 
true 

● In this case both references point to the same 
String 

● This means == and equals will both be true 



Aliasing with Strings 
String one = "Hello!"; 
String two = new String("Hello!"); 
System.out.println(one == two); 
System.out.println(one.equals(two)); 

Output 

false 
true 

● In this case both references do not point to the 
same String 



What is a parameter? 



Parameters 
● A parameter is a value that is sent to a method 

when the method is called 

public class Student 
{ 
   private int age; 
 

   public void setAge(int a) 
   { 
      age = a; 
   } 
} 

● The parameter a is used by a caller to send a 
value to the method 



Parameters 
● Here is part of a main() method that uses the 

parameter to pass a value into the setName() 
method of a Student: 

public class StudentRunner 
{ 
   public static void main( String[] args ) 
   { 
      Student S123 = new Student(); 
      S123.setAge(14); 
   } 
} 
 
● 14 is passed to setAge() and becomes the value 

stored in a 



Passing Parameters 



Passing Primitive Variables 

● Java passes all primitive parameters by VALUE 

// code in main method 
int age = 14; 
S123.setAge(age); 
 

● When this method call is placed a copy of the 
value of age is passed to setAge() 

● At this point there is no connection between the 
value in the main method and the parameter in 
the method other than they have the same 
value 



Passing Primitive Variables 

● Java passes all primitive parameters by VALUE 

// code in main method 
int age = 14; 
S123.setAge(age); 
System.out.println(age); 
 

// code in Student class 
private int age; 
 

public void setAge(int a) 
{ 
 age = a; 
 a = 10; 
 System.out.println(a); 
} 
 

Output 

10 
14 

There is no relation 
between the age in the 
main and the age in the 
Student class 



Passing Reference Variables 

● Java passes all reference parameters by 
VALUE 

● However, this looks different with reference 
variables 

● It passes a copy of the reference which is the 
location of the object 

● This reference can be used to access the object 
and possibly change it 



Passing Reference Variables 
● Java passes all reference parameters by 

VALUE 
// code in main method 
String name = "Joe"; 
S123.setName(name); 
System.out.println(name); 
 

// code in Student class 
private String name; 
 

public void setName(String n) 
{ 
 name = n; 
 n = "Jane"; 
 System.out.println(n); 
} 
 

Output 

Jane 
Joe 

Name and n start by 
both pointing to a String 
"Joe", but the 
reassignment of n only 
changes n 



Passing Arrays 
public class Temp{  
 public void change(int[] temp){ 
  temp[0] = 5; 
  temp[3] = 7; 
 } 
} 
 
// code in main 
int[] t = {1,2,3,4}; 
Temp obj = new Temp(); 
obj.change(t); 
System.out.println(Arrays.toString(t)); 

Output 

[5,2,3,7] 



Passing Arrays 
public class Temp{  
 public void change(int[] temp){ 
  temp = new int[4]; 
  temp[0] = 5; 
  temp[3] = 7; 
 
 System.out.println(Arrays.toString(temp)); 
 } 
} 
 

// code in main 
int[] t = {1,2,3,4}; 
Temp obj = new Temp(); 
obj.change(t); 
System.out.println(Arrays.toString(t)); 

Output 

[5,0,0,7] 
[1,2,3,4] 



public class One{ 
 private String name; 
 

 public void update(){ 
  name = "Bob"; 
 } 
 

 public String toString(){ 
  return name; 
 } 
} 
 

public class Two{ 
 public void mys(One a, One b){ 
  a = b; 
  b.update(); 
 } 
} 
 

// code in the main 
Two test = new Two(); 
One x = new One("Jane"); 
One y = new One("Joe"); 
test.mys(x, y); 
System.out.println(x + " " + y); 

Passing Objects 

Output 

Jane Bob 



equals Method 



Sample Student Class 
● Here is an example of a Student class we will use 

for demonstration: 
public class Student 
{ 
   private String name; 
 

   public Student() 
   { 
      name = ""; 
   } 
 

   public Student(String n) 
   { 
      name = n; 
   } 
} 

Default 
Constructor 

Initialization 
Constructor 



equals Method 
Student S1234 = new Student("Joe"); 
Student S2345 = S1234; 
Student S3456 = new Student("Joe"); 
System.out.println(S1234 == S2345); 
System.out.println(S1234.equals(S2345)); 
System.out.println(S1234 == S3456); 
System.out.println(S1234.equals(S3456)); 

Output 

true 
false 
false 
false 

● Why do we still get false on the last 
print statement? 

● In the Student class we did not 
provide a way to check equality on 
two Student objects 



Updated Student Class 
public class Student{ 
   private String name; 
 

   public Student() 
   { 
      name = ""; 
   } 
   public Student(String n) 
   { 
      name = n; 
   } 
   public boolean equals(Object obj) 
   { 
      Student s = (Student) obj; 
      return name.equals(s.getName()); 
   } 
} 

Equals 
Method 



equals Method 
Student S1234 = new Student("Joe"); 
Student S2345 = S1234; 
Student S3456 = new Student("Joe"); 
System.out.println(S1234 == S2345); 
System.out.println(S1234.equals(S2345)); 
System.out.println(S1234 == S3456); 
System.out.println(S1234.equals(S3456)); 

Output 

true 
true 
false 
true 

● The equals method works as we 
intended now that the equals method 
has been written 
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