
AP Computer Science
References and Parameters

This work is licensed under an Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/

What is a reference?

References vs. Objects

● An object is the actual instance of the class
stored in memory

● A reference describes the location in memory of
a particular object

● A class is a blueprint for creating an object
● To actually create an instance of a class we use

a constructor with the new keyword

Sample Student Class
● Here is an example of a Student class we will use

for demonstration:
public class Student
{
 private String name;

 public Student()
 {
 name = "";
 }

 public Student(String n)
 {
 name = n;
 }
}

Default
Constructor

Initialization
Constructor

References vs. Objects

● Here is an example of a reference:

Student S1234;

● At this point it does not store the location of an
object

●It points to a null location

● To create an object we need to instantiate it:

S1234 = new Student("Joe");

Reference Constructor call

References vs. Objects
Student S1234;

S1234 = new Student("Joe");

S1234 null

S1234 A Student
name Joe

Reference Object

● What is name? What is Joe?

Aliasing

● Recall that there can be more than one
reference to a given object

● Each reference is called an alias
● It is very important you understand the potential

problems when there are multiple references to
the same object

Aliasing with Objects
Student S1234 = new Student("Joe");
Student S2345 = S1234;

S1234 A Student
name Joe S2345

S1234.setName("Jane");
System.out.println(S1234.getName());
System.out.println(S2345.getName());

Output

Jane
Jane

Aliasing with Arrays
int[] arr = {1,2,3,4};
int[] temp = arr;

arr

temp
temp[2] = 8;
arr[1] = 7;
System.out.println(Arrays.toString(arr));
System.out.println(Arrays.toString(temp));

Output

[1,7,8,4]
[1,7,8,4]

0 1 2 3

1 2 3 4

Aliasing with Strings
String one = "Hello!";
String two = one;
System.out.println(one == two);
System.out.println(one.equals(two));

Output

true
true

● In this case both references point to the same
String

● This means == and equals will both be true

Aliasing with Strings
String one = "Hello!";
String two = "Hello!";
System.out.println(one == two);
System.out.println(one.equals(two));

Output

true
true

● In this case both references point to the same
String

● This means == and equals will both be true

Aliasing with Strings
String one = "Hello!";
String two = new String("Hello!");
System.out.println(one == two);
System.out.println(one.equals(two));

Output

false
true

● In this case both references do not point to the
same String

What is a parameter?

Parameters
● A parameter is a value that is sent to a method

when the method is called

public class Student
{
 private int age;

 public void setAge(int a)
 {
 age = a;
 }
}

● The parameter a is used by a caller to send a
value to the method

Parameters
● Here is part of a main() method that uses the

parameter to pass a value into the setName()
method of a Student:

public class StudentRunner
{
 public static void main(String[] args)
 {
 Student S123 = new Student();
 S123.setAge(14);
 }
}

● 14 is passed to setAge() and becomes the value

stored in a

Passing Parameters

Passing Primitive Variables

● Java passes all primitive parameters by VALUE

// code in main method
int age = 14;
S123.setAge(age);

● When this method call is placed a copy of the
value of age is passed to setAge()

● At this point there is no connection between the
value in the main method and the parameter in
the method other than they have the same
value

Passing Primitive Variables

● Java passes all primitive parameters by VALUE

// code in main method
int age = 14;
S123.setAge(age);
System.out.println(age);

// code in Student class
private int age;

public void setAge(int a)
{
 age = a;
 a = 10;
 System.out.println(a);
}

Output

10
14

There is no relation
between the age in the
main and the age in the
Student class

Passing Reference Variables

● Java passes all reference parameters by
VALUE

● However, this looks different with reference
variables

● It passes a copy of the reference which is the
location of the object

● This reference can be used to access the object
and possibly change it

Passing Reference Variables
● Java passes all reference parameters by

VALUE
// code in main method
String name = "Joe";
S123.setName(name);
System.out.println(name);

// code in Student class
private String name;

public void setName(String n)
{
 name = n;
 n = "Jane";
 System.out.println(n);
}

Output

Jane
Joe

Name and n start by
both pointing to a String
"Joe", but the
reassignment of n only
changes n

Passing Arrays
public class Temp{
 public void change(int[] temp){
 temp[0] = 5;
 temp[3] = 7;
 }
}

// code in main
int[] t = {1,2,3,4};
Temp obj = new Temp();
obj.change(t);
System.out.println(Arrays.toString(t));

Output

[5,2,3,7]

Passing Arrays
public class Temp{
 public void change(int[] temp){
 temp = new int[4];
 temp[0] = 5;
 temp[3] = 7;

 System.out.println(Arrays.toString(temp));
 }
}

// code in main
int[] t = {1,2,3,4};
Temp obj = new Temp();
obj.change(t);
System.out.println(Arrays.toString(t));

Output

[5,0,0,7]
[1,2,3,4]

public class One{
 private String name;

 public void update(){
 name = "Bob";
 }

 public String toString(){
 return name;
 }
}

public class Two{
 public void mys(One a, One b){
 a = b;
 b.update();
 }
}

// code in the main
Two test = new Two();
One x = new One("Jane");
One y = new One("Joe");
test.mys(x, y);
System.out.println(x + " " + y);

Passing Objects

Output

Jane Bob

equals Method

Sample Student Class
● Here is an example of a Student class we will use

for demonstration:
public class Student
{
 private String name;

 public Student()
 {
 name = "";
 }

 public Student(String n)
 {
 name = n;
 }
}

Default
Constructor

Initialization
Constructor

equals Method
Student S1234 = new Student("Joe");
Student S2345 = S1234;
Student S3456 = new Student("Joe");
System.out.println(S1234 == S2345);
System.out.println(S1234.equals(S2345));
System.out.println(S1234 == S3456);
System.out.println(S1234.equals(S3456));

Output

true
false
false
false

● Why do we still get false on the last
print statement?

● In the Student class we did not
provide a way to check equality on
two Student objects

Updated Student Class
public class Student{
 private String name;

 public Student()
 {
 name = "";
 }
 public Student(String n)
 {
 name = n;
 }
 public boolean equals(Object obj)
 {
 Student s = (Student) obj;
 return name.equals(s.getName());
 }
}

Equals
Method

equals Method
Student S1234 = new Student("Joe");
Student S2345 = S1234;
Student S3456 = new Student("Joe");
System.out.println(S1234 == S2345);
System.out.println(S1234.equals(S2345));
System.out.println(S1234 == S3456);
System.out.println(S1234.equals(S3456));

Output

true
true
false
true

● The equals method works as we
intended now that the equals method
has been written

paramsworksheet3.doc

	AP Computer Science
	What is a reference?
	References vs. Objects
	Sample Student Class
	References vs. Objects
	References vs. Objects
	Aliasing
	Aliasing with Objects
	Aliasing with Arrays
	Aliasing with Strings
	Aliasing with Strings
	Aliasing with Strings
	What is a parameter?
	Parameters
	Parameters
	Passing Parameters
	Passing Primitive Variables
	Passing Primitive Variables
	Passing Reference Variables
	Passing Reference Variables
	Passing Arrays
	Passing Arrays
	Passing Objects
	equals Method
	Sample Student Class
	equals Method
	Updated Student Class
	equals Method
	paramsworksheet3.doc

