Overriding Methods & Polymorphism

AP Computer Science

Overriding Methods

This is when you replace the implementation of a
method in the superclass

For example, we might have an Animal superclass
with Dog, Cat, and Cow subclasses
The overridden method must have the same
method signature

- Method name, return type, and parameters
Can anyone think of a method we have overridden
In the past?

- toString()

- equals()

Animal

sl

Dog Cat Cow

- Each class will have a speak method to allow the
animal to speak
- Do all of these animals make the same sound?
- No, you would want to give each one their own
specific speak method

Which methods are overridden? Are any overloaded?

public class Animal ({

public String

speak () { return

public class Dog
public String

}

extends Animal {
speak () { return

N Overridden

public class Cat
public String

}

extends Animal ({
speak () { return

N Overridden

public class Cow
public String
public String

extends Animal ({
speak () { return

speak (String s) { return s;

Overridden

;o)

Overloaded

- What is the output? Which getArea() Is called?
- Which method is overridden?

Shape cir = new Circle (50,

40,

10.5) ;

System.out.println(cir.getArea()) ;

m(10.5)2

public class Shape ({
private int x, y;

public Shape(int a, int b) { x = a; y = b; }
public double getArea() { return O;

H}

public class Circle extends Shape ({

private double radius;

public Circle(int x, int y, double r)[uSilaleloRslaEIVE=RIy

{ super(x, y), radius =

r;

}

Note that getArea has

the exact same

both classes

public double getArea() { return Math.PI * r * r; }}

Polymorphism

Remember, we can refer to inheritance as an is-a
relationship.
Therefore, a variable can hold a reference to an
object whose class is a descendant of the class of
the variable

- Shape cir = new Circle(l, 2, 3.0);
You can call any method defined in Shape, but NOT
the ones only defined in Circle.

This is an example of polymorphism, i.e. the abllity
of the Shape object to take on multiple forms

- What is the output?

Circle cirl = new Circle (50, 40, 10.5);

System.out.println(cirl.getX())

public class Shape ({
private int x, y;
public Shape (int xx, int yy) { x
public int getX() { return x; }

}

getX() in Shape

XX; Yy =Yy, }

public class Circle extends Shape {
private double radius;

public Circle(int x, int y, double r)

{ super(x, y), radius = r; }

. What is different with this code? Will it work?

Shapelcirl = new Circle (50, 40, 10.5);
System.out.println(cirl.getX()) ;

public class Shape { get)(() N Shape

private int x, y;

public Shape(int xx, int yy) { x = xx; y = yy, }
public int getX() { return x; }

}

public class Circle extends Shape { 5()
private double radius;

public Circle(int x, int y, double r)
{ super(x, y), radius = r; }

- What is the output?

Circlelcirl = new Circle (50, 40, 10.5);
System.out.println(cirl.getRadius()) ;

public class Shape {
private int x, y;

getRadius() in Circle

public Shape (int xx, int yy) { x = xx; y = yy, }

public int getX() { return x; }

}

public class Circle extends Shape ({
private double radius;

10.5

public Circle(int x, int y, double r)
{ super(x, y), radius = r; }
public double getRadius() { return radius;

}

. What is different with this code? Will it work?

Shapelcirl = new Circle (50,

System.out.println(cirl.getRadius())

40, 10.5);

public class Shape ({
private int x, y;

public Shape (int xx, int yy) { x

Does not compile

public int getX() { return x; }

}

public class Circle extends Shape {

private double radius;

public Circle(int x, int y, double r)

{ super(x, y), radius

No getRadius()
In Shape

r; }

public double getRadius() { return radius; }

}

- What is the output?

Shapelcirl = new Circle (50, 40, 10.5);
ystem.out.println(cirl.getRadius()) ;

public class Shape { getRadius() in Circle

private int x, y;

public Shape (int xx, int yy) { x = xx; y = yy, }
public double getRadius() { return 0; }
}

public class Circle extends Shape ({
private double radius; 10.5

public Circle(int x, int y, double r)
{ super(x, y), radius = r; }
public double getRadius() { return radius; }

- What is the output?

Shape cir = new Circle (50, 40, 10.5);

System.out.println(cir.getArea())

public class Shape {
private int x, y;
public Shape(int xx, int yy) { x = xx; vy = yy, }
public double getArea() { return 0; }

} getArea() in

public class Circle extends Shape ({ Circle
private double radius;

public Circle(int x, int y, double r)
{ super(x, y); radius = r; }
public double getArea() { return Math.PI * r * r;

}

- How do | know what methods | can call?
- Consider the class hierarchy - look at the object
not the reference type

- Shape can

access it's own
methods and
Object's

- Shape cannot
access
Circle's
methods

Object

public String toString()
public boolean equals (Object obj)
etc

—

Shape

public Shape(int x, int y)
public int getX()

public int getY ()

public double getArea ()

—

Circle

public Circle(int x, int y, double r)
public int getRadius ()
public double getArea ()

—

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

. What methods does one have access to?

Object one = new Circle (50, 40, 10.5);

Object

public String toString()
public boolean equals (Object obj)
etc

—

Shape

public Shape (int x, int y)
public int getX()

public int getY ()

public double getArea()

—

Circle

public Circle(int x, int y, double r)
public int getRadius ()
public double getArea()

—

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

What is the output?

Animal animal = new Dog() ;

System.out.println (animal.speak()) ;

Bark!

public class Animal ({
private String name;
public Animal (String n) { name =
public String speak() { return

n,

}

public class Dog extends Animal {
public String speak() { return

Consider the following subclasses

public class Animal ({

public String

speak () { return

}

}

public class Dog
public String

}

extends Animal ({
speak () { return

public class Cat
public String

}

extends Animal ({
speak () { return

public class Cow
public String

extends Animal ({
speak () { return

What is the output?

ArraylList<Animal> list = new ArrayList<Animal>() ;

list.add (new Dog ())
list.add (new Cat())
list.add (new Cow ())

for(int i = 0; i < list.size(); i++)
System.out.println(list.get (i) .speak())

- The list contains different implementations
(subclasses) of Animal

- ... but they all share the speak method.

Bark!
Meow!
Moo!

Using the examples below, which would be allowed?

Animal animal;
Dog dog;
Cat cat;
Cow cow;

A superclass can refer to a

subclass, but a subclass
cannot refer to a superclass

animal = new Cat() ;
dog = new Cat()
cat = new Cat();
cow = new Animal () ;

