Advanced Sorting

AP Computer Science

- Remember all of the sorting algorithms we
already covered?
. Bubble, selection, insertion, bogo, etc.

. On average, how many computational steps did
It take to sort a list of size n using one of these
sorts?

- N2 computational steps

. We can do much better than that!

Merge sort

. Merge sort is classified as a "divide and
conguer" algorithm
. Here is the basic idea:
. Divide the unsorted list into 2 sublists
. Recursively call merge sort on both sublists
.... Which creates two more sublists for each
call!
-Repeats until there is only one element in the
sublist
. Merge the two sublists back together (and
maintain sorted order), then return it

6.0
B H O O
0 6

0 3 6 9
s([0D) — [°13]

s([6.01) —> merge(s([9D). s(I3D)—L3,9]

s([9.3.6,0]) — merge(s([9.,9])., s([6,6]1))
The Stack —[0,3,6,9]

Ieftm rightm
t t
*

- Make an index pointer for left, right, and
arr,eg.l = 0,r = 0,1 = 0.
. Add the minimum of left and right into arr,

then update the index pointers.
- Repeat until you reach the end of arr.

int]] mergeSort(int[] arr):
iIT (arr.length <= 1): return arr

int mid
int[] left
int[] right

arr_.length /7 2
mergeSort(arr[O0..mid])

1 =0, r=20
for (int 1 = 0; 1 < arr.length; 1++):
1T (r >= right.length): arr[i]
else 1T (I >= left._length): arr[i]

else 1T (left[l] < right[r]): arr[i]
else: arr[i]

return arr

mergeSort(arr[(mid+1l)..arr.

length])

left[1],
right|[r],

left]1],
right|[r],

1++
r++

I++
r++

. Quick sortis also c
conguer" algorithm
before

. Here is the basic idea:

. Pick an element,

lassified as a "divide and
, splitting up the list just like

called a pivot, from the list

. Create two sublists
-One contains all elements < pivot
. The other contains all elements > pivot

- Recursively call ¢
. Concatenate the
the right sublist, t

uicksort on both sublists
eft sublist with the pivot and

nen return it

B

s(3> [— L1 [3]

s([9D) — s(ID + [0]1 + s([3D) — [0,3]

s([9,3,6,0]) — s([6,8]) + [6] + s([9D
The Stack — [0,3,6,9]

int[] quickSort(int[] arr):

iIT (arr.length <= 1): return arr

int pivot = arrf[arr.length /7 2];
int[] left = [], right = []
for (int element : arr):
iIT (element <= pivot):
left.add(element)
else:
right.add(element)

return quickSort(left) + [pivot] + quickSort(right)

. Quick sort and merge sort provide more efficient
ways to sort large lists

. Remember, it took n? computational steps to
complete the old school routines
- Now we only take n*log(n) steps (on average)
using our "divide and conquer" algorithms

- Now we will revisit our "Sorting Efficiently” labs
to test out the new sorts!

	AP Computer Science
	Sorting
	Merge sort
	Merge sort
	Merge sort: step-by-step
	Merge: step-by-step
	Merge sort code
	Quick sort
	Quick sort
	Quick sort: step-by-step
	Quick sort code
	Why do we care?

