
AP Computer Science
Advanced Sorting

Sorting

● Remember all of the sorting algorithms we
already covered?

● Bubble, selection, insertion, bogo, etc.

● On average, how many computational steps did
it take to sort a list of size n using one of these
sorts?

● n2 computational steps

● We can do much better than that!

Merge sort

Merge sort

● Merge sort is classified as a "divide and
conquer" algorithm

● Here is the basic idea:
● Divide the unsorted list into 2 sublists
● Recursively call merge sort on both sublists

●... which creates two more sublists for each
call!

●Repeats until there is only one element in the
sublist

● Merge the two sublists back together (and
maintain sorted order), then return it

Merge sort: step-by-step
3 6 9 0

3 9 6 0

3 9 6 0

3 9 6 0

0 9 3 6

s([9,3])

s([9])

s([9,3,6,0])

The Stack

[9] s([3]) [3]

merge(s([9]), s([3]))

merge(s([9,3]), s([6,0]))

[3,9]

merge([3,9], s([6,0]))

s([6,0])

s([6]) s([0])

merge([3,9], [0,6])

[0,3,6,9]

Merge: step-by-step

● Make an index pointer for left, right, and
arr, e.g. l = 0, r = 0, i = 0.

● Add the minimum of left and right into arr,
then update the index pointers.

● Repeat until you reach the end of arr.

3 9 6 0

left right

arr 0 3 6 9

int[] mergeSort(int[] arr):
 if (arr.length <= 1): return arr // base case
 // recursively sort two sub arrays ("divide")
 int mid = arr.length / 2
 int[] left = mergeSort(arr[0..mid])
 int[] right = mergeSort(arr[(mid+1)..arr.length])
 // merge the left and right arrays ("conquer")
 int l = 0, r = 0
 for (int i = 0; i < arr.length; i++):
 // if at the end of left or right array
 if (r >= right.length): arr[i] = left[l], l++
 else if (l >= left.length): arr[i] = right[r], r++
 // find the minimum of the left and right array
 else if (left[l] < right[r]): arr[i] = left[l], l++
 else: arr[i] = right[r], r++
 // return the merged and sorted array
 return arr

Merge sort code

Quick sort

Quick sort
● Quick sort is also classified as a "divide and

conquer" algorithm, splitting up the list just like
before

● Here is the basic idea:
● Pick an element, called a pivot, from the list
● Create two sublists

●One contains all elements ≤ pivot
●The other contains all elements > pivot

● Recursively call quicksort on both sublists
● Concatenate the left sublist with the pivot and
the right sublist, then return it

Quick sort: step-by-step
3 6 9 0

s([9,3,6,0])

The Stack

s([3,0]) + [6] + s([9])

6

9

3 0

s([3,0]) s([]) + [0] + s([3])

0

s([])

3

[] s([3]) [3]

 [] + [0] + [3] [0,3]

3 0

 [0,3] + [6] + s([9])

s([9])

 [0,3] + [6] + [9]

[0,3,6,9]

3 6 0 9

int[] quickSort(int[] arr):
 // base case
 if (arr.length <= 1): return arr

 // select a pivot and create two sublists ("divide")
 // NOTE: pivot can be any element (I'll use the middle)
 int pivot = arr[arr.length / 2];
 int[] left = [], right = []
 for (int element : arr):
 if (element <= pivot):
 left.add(element)
 else:
 right.add(element)

 // recursively sort each sublist and return the
 // concatenated result ("conquer")
 return quickSort(left) + [pivot] + quickSort(right)

Quick sort code

Why do we care?
● Quick sort and merge sort provide more efficient

ways to sort large lists

● Remember, it took n2 computational steps to

complete the old school routines
● Now we only take n*log(n) steps (on average)
using our "divide and conquer" algorithms

● Now we will revisit our "Sorting Efficiently" labs

to test out the new sorts!

	AP Computer Science
	Sorting
	Merge sort
	Merge sort
	Merge sort: step-by-step
	Merge: step-by-step
	Merge sort code
	Quick sort
	Quick sort
	Quick sort: step-by-step
	Quick sort code
	Why do we care?

