
AP Computer Science
Inheritance

Can you see any similarities in
the following examples?

Circle Class
public class Circle {
 private int x, y;
 private double radius;

 // constructors not shown

 // modifiers and accessors for y not shown

 public void setX(int xPos){
 x = xPos;
 }

 public int getX(){
 return x;
 }

 public double getArea(){
 return Math.PI * radius * radius;
 }
}

Rectangle Class
public class Rectangle {
 private int x, y;
 private double width, height;

 // constructors not shown

 // modifiers and accessors for y not shown

 public void setX(int xPos){
 x = xPos;
 }

 public int getX(){
 return x;
 }

 public double getArea(){
 return width * height;
 }
}

Triangle Class
public class Triangle {
 private int x, y;
 private double base, height;

 // constructors not shown

 // modifiers and accessors for y not shown

 public void setX(int xPos){
 x = xPos;
 }

 public int getX(){
 return x;
 }

 public double getArea(){
 return 0.5 * base * height;
 }
}

Code Duplication

Circle Class Rectangle Class Triangle Class

Methods Inside Methods Inside Methods Inside

getX()
setX()
getY()
setY()
getArea()
getRadius()
setRadius()

getX()
setX()
getY()
setY()
getArea()
getWidth()
setWidth()
getHeight()
setHeight()

getX()
setX()
getY()
setY()
getArea()
getBase()
setBase()
setHeight()
getHeight()

Instance Variables Inside Instance Variables Inside Instance Variables Inside

x
y
radius

x
y
width
height

x
y
base
height

Code Duplication

● There are duplicates of the instances variables for
the x and y positions

● There are duplicates of the modifier and accessor
methods for the instance variables x and y

● Every class contains a getArea() method
o However the implementation is different

● What if there was an easy way to allow us to reuse

code instead of duplicating it in every class?

Inheritance

● Inheritance allows us to inherit (reuse) most of the
code from one class and use it in another class

● The new class is similar to the original, but has a
few differences

● There are multiple ways to think about this

relationship:
o Parent class/child class
o Superclass/subclass
o Base class/derived class

Inheritance

● There are two things not inherited by the subclass:
o Constructors are not inherited - they need to be

called from the subclass
o Instance variables are not inherited - they are

accessed through the accessor and modifier
methods

Inheritance

● Inheritance is defined as an is-a relationship
o You should always be able to say the child is-a

parent:
 Camry is-a Car
 Dog is-a Mammal
 Student is-a Person

● Java uses single inheritance
o This means a child can only have one parent

class
● A parent class can have multiple child classes

Examples Revisited
● We will revisit our previous examples to take

advantage of inheritance
● We will use Shape as our parent class:

public class Shape {
 private int x, y;

 // constructors not shown

 // modifiers and accessors for y not shown

 public void setX(int xPos){
 x = xPos;
 }

 public int getX(){
 return x;
 }
}

Circle Class

public class Circle1 extends Shape {
 private double radius;

 // constructors not shown

 public double getArea(){
 return Math.PI * radius * radius;
 }
}

● To use inheritance we use the keyword extends
● Notice how we are now only worried about what

is unique about a circle in relation to a shape

Rectangle & Triangle Classes
public class Rectangle1 extends Shape{
 private double width, height;

 // constructors not shown

 public double getArea(){
 return width * height;
 }
}

public class Triangle1 extends Shape{
 private double base, height;

 // constructors not shown

 public double getArea(){
 return 0.5 * base * height;
 }
}

Circle Class Rectangle Class Triangle Class

Methods Inside Methods Inside Methods Inside

getArea() getArea() getArea()

Instance Variables Inside Instance Variables Inside Instance Variables Inside

radius width
height

base
height

Hierarchy for Shapes Example

Shape

Triangle Circle Rectangle

Shape Class

Methods Inside

setX()
getX()
setY()
getY()

Instance Variables Inside

x
y

Another Hierarchy Example

Vehicle

Accord

Bus Truck Car

Volt Camry

A Truck is-
a Vehicle

Camry is-a
Car

Inheritance - Behind the
Scenes

Instantiating an Object

● In the examples so far we have excluded the
constructors

● We will add the constructors to a couple of the
classes to demonstrate how objects of the
subclass are instantiated

public class Shape2 {
 private int x, y;

 public Shape2(){
 x = y = 0;
 }

 public Shape2(int xPos, int yPos){
 x = xPos;
 y = yPos;
 }}

Instantiating an Object

public class Circle2 extends Shape2 {
 private double radius;

 public Circle2(){
 radius = 0.0;
 }

 public Circle2(double r){
 radius = r;
 }}

Instantiating an Object

public class Circle3 extends Shape2 {
 private double radius;

 public Circle3(){
 super();
 radius = 0.0;
 }

 public Circle3(double r){
 super();
 radius = r;
 }}

// main of another class
Circle3 cir1 = new Circle3();

● Here is a constructor call:

● Everything should look great except this super() call?

Calling the Parent Constructor

● Remember in our Shape class we have two
instance variables we are inheriting

● How do these two variables get instantiated?
● This is what the super() call does - it calls the

constructor in the parent class

Calling the Parent Constructor

● If you do not provide a super() call Java will
automatically call the default constructor in the
parent class

● The super() call must be the first statement
inside the child constructor!

Default Constructor

● Can anyone think of a potential problem with
calling the default constructor?

● What happens if the parent class does not have
a default constructor, but does have an
initialization constructor?

● This is something to keep in mind, and a good
reason to always provide a default constructor

Super Constructor Call

public class Circle4 extends Shape2 {
 private double radius;

 public Circle4(){
 super();
 radius = 0.0;
 }

 public Circle4(double r, int xPos, int yPos){
 super(xPos, yPos);
 radius = r;
 }
}

// main of another class
Circle4 cir1 = new Circle4(8.0, 50, 50);

● We could also do something like this:

Super Constructor Call

public class Circle5 extends Shape2 {
 private double radius;

 public Circle5(){
 super();
 radius = 0.0;
 }

 public Circle5(double r, int xPos, int yPos){
 radius = r;
 super(xPos, yPos);
 }
}

// main of another class
Circle5 cir1 = new Circle5(8.0, 50, 50);

● Would this work?

● No, the super() call must happen first

Super Constructor Call

public class Circle6 extends Shape3 {
 private double radius;

 public Circle6(){
 radius = 0.0;
 }}

public class Shape3 {
 private int x, y;

 public Shape3(int xPos, int yPos){
 x = xPos;
 y = yPos;
 }}

// main of another class
Circle6 cir1 = new Circle6();

● Would this work?

● No, there is no default constructor in Shape

toString()

public class Circle7 extends Shape4 {
 private double radius;

 public String toString(){
 return "Circle toString()";
 }}

public class Shape4 {
 private int x, y;

 public String toString(){
 return "Shape toString()";
 }}

// main of another class
Circle7 cir1 = new Circle7();
System.out.println(cir1);

● What is the output?

Output

Circle toString()

Super

public class Circle7 extends Shape4 {
 private double radius;

 public String toString(){
 return "Circle toString()\n" + super.toString();
 }}

public class Shape4 {
 private int x, y;

 public String toString(){
 return "Shape toString()";
 }}

// main of another class
Circle7 cir1 = new Circle7();
System.out.println(cir1);

● What is the output?

Output

Circle toString()
Shape toString()

Super

● super can be used to call any method or
constructor in the parent class
o super.toString();
o super.setX(5);
o super.getX();

This

public class Circle8 extends Shape {
 private double radius;

 public Circle8(){
 this(0.0);
 }

 public Circle8(double r){
 radius = r;
 }
}

// main of another class
Circle8 cir1 = new Circle8();

● Here is a constructor call:

● Any guesses on what this(0.0) does?

This

public class Shape5 {
 private int x, y;

 public Shape5(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public String toString(){
 return "" + "x: " + x + "\n" + "y: " + y;
 }
}

// main of another class
Shape5 shape1 = new Shape5(5, 8);
System.out.println(shape1);

● What is the output?

Output

x: 5
y: 8

This

public class Shape6 {
 private int x, y;

 public Shape6() {
 this(0, 0);
 }

 public Shape6(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public String toString(){
 return "" + "x: " + x + "\n" + "y: " + y;
 }}

// main of another class
Shape6 shape1 = new Shape6();
System.out.println(shape1);

● What is the output?

Output

x: 0
y: 0

This

● this can be used to call any method or
constructor for the current object.
o this.toString();
o this.setX(5);
o this.getX();
o this();

Files from this presentation

● You can find any of the Java classes used as
examples in this presentation here

https://docs.google.com/file/d/0B8_KZro2ciMreXJLcXlJZjh4eU0/edit

	AP Computer Science
	Can you see any similarities in the following examples?
	Circle Class
	Rectangle Class
	Triangle Class
	Code Duplication
	Code Duplication
	Inheritance
	Inheritance
	Inheritance
	Examples Revisited
	Circle Class
	Rectangle & Triangle Classes
	Hierarchy for Shapes Example
	Another Hierarchy Example
	Inheritance - Behind the Scenes
	Instantiating an Object
	Instantiating an Object
	Instantiating an Object
	Calling the Parent Constructor
	Calling the Parent Constructor
	Default Constructor
	Super Constructor Call
	Super Constructor Call
	Super Constructor Call
	toString()
	Super
	Super
	This
	This
	This
	This
	Files from this presentation

