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The boolean Type 



The boolean type 

● The boolean type keeps track of whether 
something is true or false 

● Declaration of a boolean variable is like: 

boolean value; 



Storage for a boolean 

● This line of code creates a box named value 
designed only to hold booleans 

● It cannot be used to store numbers 

boolean value; 

value 



Assignment for a boolean 

● This line of code stores false into value 
● Remember the = operator is like an arrow 

pointing left 

value = false; 

value 

false false 



Operations on booleans 



Operations on booleans 

● Why would we want to do operations on 
booleans? 

● Like numerical types, we can combine 
booleans in various ways. 

● You might be familiar with these operations if 
you have taken a course in logic. 



The ! Operator 

● The NOT operator 
● Changes a true into a false or a false into 

a true 

x !x 

true false 

false true 



Combining booleans 

● We can combine statements in logic together to 
make other interesting statements 

● The way we combine them makes a difference, 
e.g. 
● Politicians lie    

 (True) 
● Cast iron sinks    

 (True) 
● Politicians lie in cast iron sinks. 

 (Absurd) 



The && Operator 

● The AND operator 
● It gives back true only if both things being 

combined are true 
● If I can swim AND the pool is not filled with acid, 

then I will survive 

x y x && y 
true true true 
true false false 
false true false 
false false false 



The || Operator 

● The OR operator 
● It gives back true if either or both things being 

combined are true 
● If I get punched in the face OR kicked in the 

stomach, then I will be in pain 

x y x || y 
true true true 
true false true 
false true true 
false false false 



Quick Check 

(!true && (false ||(false || true))) 
  
● Is this expression true or false? 
 
● It is false 



Short circuit evaluation 

● In some circumstances, Java does not check the 
whole expression: 

● (true || (some complicated expression)) 
● Ignores everything after || and gives back true 

● (false && (some complicated expression)) 
● Ignores everything after && and gives back false 



Laws of Boolean Algebra 

● Absorption Law 
● A || (A && B) = A  
● A && (A || B) = A 

● Distributive Law 
● A && (B || C) = A && B || A && C 
● A || (B && C) = (A || B) && (A || C) 

For more rules:  http://mathworld.wolfram.com/BooleanAlgebra.html 

http://mathworld.wolfram.com/BooleanAlgebra.html


DeMorgan's Law 

● DeMorgan was a British mathematician who 
showed the importance of several logic rules. 

● Two of these: 
● !(A && B) is equivalent to !A || !B 
● !(A || B) is equivalent to !A && !B 

● These come in very handy and are often tested 
on the AP Exam 



Precedence of Operators 

Operators Precedence 

postfix expr++ expr-- 

unary ++expr --expr ! 

multiplicative * / % 

additive + - 

relational < > <= >= 

equality == != 

logical AND && 

logical OR || 

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>= 



Conditional Execution 



Conditional execution 

● So far we have only considered Java programs 
that do one thing after another, in sequence 

● Our programs have not had the ability to choose 
between different possibilities 

● Now, they will! 



Behold! 

● x is small! will only print out if x is less than 
5 

● In this case, we know it is, but x could come 
from user input 

int x = 4; 
 
if( x < 5 ) 
 System.out.println("x is small!"); 

● The if-statement: 



The if part Any boolean 
expression 

Any single executable 
statement 

Anatomy of an if 

if( condition )  
 statement; 



The idea of an if 

● It is simply a decision 
● A very natural if-then sort of relationship 
● If the condition is true, then do something 
● For example: 

● If I win a million dollars, 
● Then I will yodel like an insane Swiss monkey 



Multiple Statements and Nesting 



What if you need to do several 
things conditionally? 
● Use braces to treat a group of statements like a 

single statement 
● I would encourage you to use this style all the 

time! 

if( x == 4 ) 
{ 
 System.out.println("I dislike 4");  
 System.out.println("Let us change 
x."); 
 x = 10; 
} 



An if with multiple statements 

Multiple  
statements 

if( condition ) 
{  
 statement1; 
 statement2; 
 … 
 statementN; 
} 



Conditions 



Conditions in the if 

● Any statement that evaluates to a boolean is 
legal 

● Examples: 
● x == y 
● true 
● (1 + 2) < 5 
● s.equals("Help me!") && (z < 4) 



Comparison 

● The most common condition you will find is a 
comparison between two things 

● In Java, that comparison can be: 
● == equals 
● != does not equal 
● < less than 
● <= less than or equal to 
● > greater than 
● >= greater than or equal to 



Equals 
● You can use the == operator to compare any 

two things of the same type 
● Different numerical types can be compared as 

well (3 == 3.0) 
● Be careful with double types, 0.33333333 is 

not equal to 0.33333332 

int x = 3; 
if( x == 4 ) 
 System.out.println("Does this print?"); 
 
 
 



Not Equals 

is the same as 

if( x != 4 ) 

if( !(x == 4) ) 

● Any place you can use the == operator, you can 
use the != operator 

● If == gives true, the != operator will always give 
false, and vice versa 

● If you want to negate a condition, you can 
always use the ! as a not 



= != == 

● Remember, a single equal sign (=) is the 
assignment operator (think of a left-pointing 
arrow) 

● A double equals (==) is a comparison operator 

int y = 10; 
if( y = 6 ) //compiler error! 

boolean b = false; 
if( b = false ) //no error but confusing 



Less Than (or Equal To) 

● Watch for strict inequality (<) vs. non-strict 
inequality (<=) 

if( x <= 4 ) 
 System.out.println("x is less than 
5"); 

● Inequality is very important in programming 
● You may want to take an action as long as a 

value is below a certain threshold 
● For example, you might want to keep bidding at 

an auction until the price is greater than what 
you can afford 



Greater Than (or Equal To) 

● Just like less than or equal to, except the 
opposite 

● Note that the opposite of <= is > and the 
opposite of >= is < 

● Thus, 
● !( x <= y ) is equivalent to ( x > y ) 
● !( x >= y ) is equivalent to ( x < y ) 
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