
AP Computer Science
boolean & if Statements

Credit: Slides are modified with permission from Barry Wittman at Elizabethtown College

This work is licensed under an Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

The boolean Type

The boolean type

● The boolean type keeps track of whether
something is true or false

● Declaration of a boolean variable is like:

boolean value;

Storage for a boolean

● This line of code creates a box named value
designed only to hold booleans

● It cannot be used to store numbers

boolean value;

value

Assignment for a boolean

● This line of code stores false into value
● Remember the = operator is like an arrow

pointing left

value = false;

value

false false

Operations on booleans

Operations on booleans

● Why would we want to do operations on
booleans?

● Like numerical types, we can combine
booleans in various ways.

● You might be familiar with these operations if
you have taken a course in logic.

The ! Operator

● The NOT operator
● Changes a true into a false or a false into

a true

x !x

true false

false true

Combining booleans

● We can combine statements in logic together to
make other interesting statements

● The way we combine them makes a difference,
e.g.
● Politicians lie

 (True)
● Cast iron sinks

 (True)
● Politicians lie in cast iron sinks.

 (Absurd)

The && Operator

● The AND operator
● It gives back true only if both things being

combined are true
● If I can swim AND the pool is not filled with acid,

then I will survive

x y x && y
true true true
true false false
false true false
false false false

The || Operator

● The OR operator
● It gives back true if either or both things being

combined are true
● If I get punched in the face OR kicked in the

stomach, then I will be in pain

x y x || y
true true true
true false true
false true true
false false false

Quick Check

(!true && (false ||(false || true)))

● Is this expression true or false?

● It is false

Short circuit evaluation

● In some circumstances, Java does not check the
whole expression:

● (true || (some complicated expression))
● Ignores everything after || and gives back true

● (false && (some complicated expression))
● Ignores everything after && and gives back false

Laws of Boolean Algebra

● Absorption Law
● A || (A && B) = A
● A && (A || B) = A

● Distributive Law
● A && (B || C) = A && B || A && C
● A || (B && C) = (A || B) && (A || C)

For more rules: http://mathworld.wolfram.com/BooleanAlgebra.html

http://mathworld.wolfram.com/BooleanAlgebra.html

DeMorgan's Law

● DeMorgan was a British mathematician who
showed the importance of several logic rules.

● Two of these:
● !(A && B) is equivalent to !A || !B
● !(A || B) is equivalent to !A && !B

● These come in very handy and are often tested
on the AP Exam

Precedence of Operators

Operators Precedence

postfix expr++ expr--

unary ++expr --expr !

multiplicative * / %

additive + -

relational < > <= >=

equality == !=

logical AND &&

logical OR ||

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Conditional Execution

Conditional execution

● So far we have only considered Java programs
that do one thing after another, in sequence

● Our programs have not had the ability to choose
between different possibilities

● Now, they will!

Behold!

● x is small! will only print out if x is less than
5

● In this case, we know it is, but x could come
from user input

int x = 4;

if(x < 5)
 System.out.println("x is small!");

● The if-statement:

The if part Any boolean
expression

Any single executable
statement

Anatomy of an if

if(condition)
 statement;

The idea of an if

● It is simply a decision
● A very natural if-then sort of relationship
● If the condition is true, then do something
● For example:

● If I win a million dollars,
● Then I will yodel like an insane Swiss monkey

Multiple Statements and Nesting

What if you need to do several
things conditionally?
● Use braces to treat a group of statements like a

single statement
● I would encourage you to use this style all the

time!

if(x == 4)
{
 System.out.println("I dislike 4");
 System.out.println("Let us change
x.");
 x = 10;
}

An if with multiple statements

Multiple
statements

if(condition)
{
 statement1;
 statement2;
 …
 statementN;
}

Conditions

Conditions in the if

● Any statement that evaluates to a boolean is
legal

● Examples:
● x == y
● true
● (1 + 2) < 5
● s.equals("Help me!") && (z < 4)

Comparison

● The most common condition you will find is a
comparison between two things

● In Java, that comparison can be:
● == equals
● != does not equal
● < less than
● <= less than or equal to
● > greater than
● >= greater than or equal to

Equals
● You can use the == operator to compare any

two things of the same type
● Different numerical types can be compared as

well (3 == 3.0)
● Be careful with double types, 0.33333333 is

not equal to 0.33333332

int x = 3;
if(x == 4)
 System.out.println("Does this print?");

Not Equals

is the same as

if(x != 4)

if(!(x == 4))

● Any place you can use the == operator, you can
use the != operator

● If == gives true, the != operator will always give
false, and vice versa

● If you want to negate a condition, you can
always use the ! as a not

= != ==

● Remember, a single equal sign (=) is the
assignment operator (think of a left-pointing
arrow)

● A double equals (==) is a comparison operator

int y = 10;
if(y = 6) //compiler error!

boolean b = false;
if(b = false) //no error but confusing

Less Than (or Equal To)

● Watch for strict inequality (<) vs. non-strict
inequality (<=)

if(x <= 4)
 System.out.println("x is less than
5");

● Inequality is very important in programming
● You may want to take an action as long as a

value is below a certain threshold
● For example, you might want to keep bidding at

an auction until the price is greater than what
you can afford

Greater Than (or Equal To)

● Just like less than or equal to, except the
opposite

● Note that the opposite of <= is > and the
opposite of >= is <

● Thus,
● !(x <= y) is equivalent to (x > y)
● !(x >= y) is equivalent to (x < y)

	AP Computer Science
	The boolean Type
	The boolean type
	Storage for a boolean
	Assignment for a boolean
	Operations on booleans
	Operations on booleans
	The ! Operator
	Combining booleans
	The && Operator
	The || Operator
	Quick Check
	Short circuit evaluation
	Laws of Boolean Algebra
	DeMorgan's Law
	Precedence of Operators
	Conditional Execution
	Conditional execution
	Behold!
	Anatomy of an if
	The idea of an if
	Multiple Statements and Nesting
	What if you need to do several things conditionally?
	An if with multiple statements
	Conditions
	Conditions in the if
	Comparison
	Equals
	Not Equals
	= != ==
	Less Than (or Equal To)
	Greater Than (or Equal To)

