
AP Computer Science
Composition & Interfaces

Composition

Composition

● Composition is when one object is composed of
another object.

● This is defined as a has-a relationship.
● A person has-a leg
● A student has-a grade
● A shoe has-a lace

Hierarchy Example

Vehicle

Hubcap

Body Chassis Wheel

Tire

A Vehicle
has-a
Wheel

A Wheel
has-a
Tire

Can you think of another way to organize this
composition?
Can you think of another way to organize this
composition? What do x and y represent?

Composition Example
What is the Shape class composed of?

public class Shape {
 private int x, y;

 // constructors not shown

 // modifiers and accessors for y not shown

 public void setX(int xPos){
 x = xPos;
 }

 public int getX(){
 return x;
 }
}

Composition with Objects

public class Point {
 private int x, y;

 public Point(int xPos, int yPos){
 x = xPos;
 y = yPos;
 }

 // modifiers and accessors for y not shown
 public void setX(int xPos){
 x = xPos;
 }

 public int getX(){
 return x;
 }
}

Composition with Objects

public class Point {
 private int x, y;

 public Point(int xPos, int yPos){
 x = xPos;
 y = yPos;
 }
 // modifiers and accessors not shown
}

public class Shape {
 private Point position; //a Shape has-a Point

 public Shape(){
 this(0, 0);
 }

 public Shape(int xPos, int yPos){
 position = new Point(xPos, yPos);
 }}

Interfaces

Interfaces

● Interfaces provide a very simple view of how a
program should behave.

● Actual implementations may be very complex.
● This is an example of abstraction: a concept or

idea not associated with any specific
implementation.

public interface Spotify {
 public void pickSong(Song song);
 public void play();
 public void next();
 public void previous();
}

Interfaces

● If your class uses an interface, it must implement
all methods defined in that interface.

● Each method signature must match the interface
exactly.
● Return type
● Method name
● Parameters

● Interfaces have no constructors and cannot be
instantiated

Interfaces

Shapes Using an Interface

public class Circle implements Area{
 private double radius;
 public Circle(double r) { radius = r; }
 public double getArea(){
 return Math.PI * radius * radius;
 }
}

public interface Area {
 public double getArea();
}

Shapes Using an Interface

public class Circle extends Shape implements Area {
 private double radius;
 public Circle(double r) { radius = r; }
 public double getArea(){
 return Math.PI * radius * radius;
 }
}

public interface Area {
 public double getArea();
}

public class Shape {
 private int x, y;
 public Shape() { x = y = 0; }
}

public interface Area {
 double getArea(); // a method
declaration
 double PI = Math.PI; // a constant

}

public interface Area {
 public double getArea();
 public static final double PI = Math.PI;
}

Interfaces with Variables

● Interfaces may also contain variables, which are
always public static final
● static - initialized only once and shared by all
objects instantiated of that class

● final - cannot change, i.e. constant
●Therefore, they must be defined and assigned a
value in the interface

● Java automatically appends public, static, and
final, so you do not need to write them

Interfaces with Variables

public class Circle extends Shape implements Area {
 private double radius;
 public Circle(double r) { radius = r; }
 public double getArea(){
 return PI * radius * radius;
 }}

public interface Area {
 public double getArea();
 public static final double PI = Math.PI;
}

public class Shape {
 private int x, y;
 public Shape() { x = y = 0; }
}

The Comparable Interface
public interface Comparable {
 int compareTo(Object obj);
}

● If you implement this interface, your compareTo
method must follow these rules:
● Compares this object with obj
● Returns a negative integer, zero, or a positive
integer, when this object is less than, equal, or
greater than obj, respectively

The CompareTo() Method
public class Circle extends Shape implements Comparable {
 private double radius;
 public Circle(int x, int y, double r) {/*not shown */}
 public double getRadius() { return radius; }
 public int compareTo(Object obj) {
 Circle temp = (Circle)obj;
 if(getRadius() == temp.getRadius())
 return super.compareTo(temp);
 if(getRadius() < temp.getRadius())
 return -1;
 if(getRadius() > temp.getRadius())
 return 1;
}}

Note the differences between this slide and the next slide.

public class Circle extends Shape implements
 Comparable<Circle> {
 private double radius;
 public Circle(int x, int y, double r) {/*not shown */}
 public double getRadius() { return radius; }
 public int compareTo(Circle temp) {
 if(getRadius() == temp.getRadius())
 return super.compareTo(temp);
 if(getRadius() < temp.getRadius())
 return -1;
 if(getRadius() > temp.getRadius())
 return 1;
}}

The CompareTo() Method

Note the differences between this slide and the previous slide.

The CompareTo() Method
// main method
Circle one = new Circle(50, 50, 5);
Circle two = new Circle(25, 25, 8);
Circle three = new Circle(25, 25, 10);
Circle four = new Circle(50, 50, 5);
System.out.println(one.compareTo(two));
System.out.println(two.compareTo(three));
System.out.println(three.compareTo(four));
System.out.println(one.compareTo(four));

● The first two parameters are the x and y
coordinates and the last parameter is the radius.

● The radius is compared first and then the x and y
coordinates.

Output

-1
-1
1
0

public interface Area extends Comparable {
 double getArea(); // a method

declaration
 double PI = Math.PI; // a constant

}

public class Circle implements Area, Comparable {
 // implementation not shown.

}

Interfaces
● A subclass extends only one superclass

● Java uses single inheritance
● A subclass implements one or more interfaces

● This provides the benefits of multiple inheritance
● An subinterface extends one or more super

interfaces

● If a class implements an interface the reference can
be of the type of the Interface
o Comparable cir = new Circle();

● You can call the compareTo method defined in
Comparable, but no other methods without a cast

● This is an example of polymorphism, i.e. the ability
of the Comparable object to take on multiple forms

Polymorphism

Polymorphism

ArrayList<Comparable> list;
list = new ArrayList<Comparable>();
list.add("zebra");
list.add("monkey");
list.add("lion");
Collections.sort(list);
System.out.println(list.toString());

What is the output?

● This would sort the list based on the compareTo
method from String

● All items in this case need to be the same type

Output

[lion, monkey, zebra]

	AP Computer Science
	Composition
	Composition
	Hierarchy Example
	Composition Example
	Composition with Objects
	Composition with Objects
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Shapes Using an Interface
	Shapes Using an Interface
	Interfaces with Variables
	Interfaces with Variables
	The Comparable Interface
	The CompareTo() Method
	The CompareTo() Method
	The CompareTo() Method
	Interfaces
	Polymorphism
	Polymorphism

