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Composition 



Composition 

● Composition is when one object is composed of 
another object. 

● This is defined as a has-a relationship. 
● A person has-a leg 
● A student has-a grade 
● A shoe has-a lace 



Hierarchy Example 

Vehicle 

Hubcap 

Body Chassis Wheel 

Tire 

A Vehicle 
has-a 
Wheel 

A Wheel 
has-a 
Tire 



Can you think of another way to organize this 
composition? 
Can you think of another way to organize this 
composition?  What do x and y represent? 

Composition Example 
What is the Shape class composed of? 

public class Shape { 
   private int x, y; 
 

   // constructors not shown 
 

   // modifiers and accessors for y not shown 
 

   public void setX(int xPos){ 
      x = xPos; 
   } 
 

   public int getX(){ 
      return x; 
   } 
} 



Composition with Objects 

public class Point { 
   private int x, y; 
 

   public Point(int xPos, int yPos){ 
      x = xPos; 
      y = yPos; 
   } 
 

   // modifiers and accessors for y not shown 
   public void setX(int xPos){ 
      x = xPos; 
   } 
 

   public int getX(){ 
      return x; 
   } 
} 



Composition with Objects 

public class Point { 
   private int x, y; 
 

   public Point(int xPos, int yPos){ 
      x = xPos; 
      y = yPos; 
   } 
   // modifiers and accessors not shown 
} 

public class Shape { 
   private Point position;  //a Shape has-a Point 
 

   public Shape(){ 
      this(0, 0); 
   } 
 

   public Shape(int xPos, int yPos){ 
      position = new Point(xPos, yPos); 
   }} 



Interfaces 



Interfaces 



● Interfaces provide a very simple view of how a 
program should behave. 

● Actual implementations may be very complex. 
● This is an example of abstraction: a concept or 

idea not associated with any specific 
implementation. 

public interface Spotify { 
   public void pickSong(Song song); 
   public void play(); 
   public void next(); 
   public void previous(); 
} 

Interfaces 



● If your class uses an interface, it must implement 
all methods defined in that interface. 

● Each method signature must match the interface 
exactly. 
● Return type 
● Method name 
● Parameters 

● Interfaces have no constructors and cannot be 
instantiated 

Interfaces 



Shapes Using an Interface 

public class Circle implements Area{ 
   private double radius; 
   public Circle(double r) { radius = r; } 
   public double getArea(){ 
   return Math.PI * radius * radius; 
   } 
} 

public interface Area { 
   public double getArea(); 
} 



Shapes Using an Interface 

public class Circle extends Shape implements Area { 
   private double radius; 
   public Circle(double r) { radius = r; } 
   public double getArea(){ 
      return Math.PI * radius * radius; 
   } 
} 

public interface Area { 
   public double getArea(); 
} 

public class Shape { 
   private int x, y; 
   public Shape() { x = y = 0; } 
} 



public interface Area { 
 double getArea();   // a method 
declaration 
 double PI = Math.PI;  // a constant 
 

} 

public interface Area { 
   public double getArea(); 
   public static final double PI = Math.PI; 
} 

Interfaces with Variables 

● Interfaces may also contain variables, which are 
always public static final 
● static - initialized only once and shared by all 
objects instantiated of that class 

● final - cannot change, i.e. constant 
●Therefore, they must be defined and assigned a 
value in the interface 

● Java automatically appends public, static, and 
final, so you do not need to write them 



Interfaces with Variables 

public class Circle extends Shape implements Area { 
   private double radius; 
   public Circle(double r) { radius = r; } 
   public double getArea(){ 
      return PI * radius * radius; 
   }} 

public interface Area { 
   public double getArea(); 
   public static final double PI = Math.PI; 
} 

public class Shape { 
   private int x, y; 
   public Shape() { x = y = 0; } 
} 



The Comparable Interface 
public interface Comparable { 
   int compareTo(Object obj); 
} 

● If you implement this interface, your compareTo 
method must follow these rules: 
● Compares this object with obj 
● Returns a negative integer, zero, or a positive 
integer, when this object is less than, equal, or 
greater than obj, respectively 



The CompareTo() Method 
public class Circle extends Shape implements Comparable { 
   private double radius; 
   public Circle(int x, int y, double r) {/*not shown */} 
   public double getRadius() { return radius; } 
   public int compareTo(Object obj) { 
      Circle temp = (Circle)obj; 
      if(getRadius() == temp.getRadius()) 
         return super.compareTo(temp); 
      if(getRadius() < temp.getRadius()) 
         return -1; 
      if(getRadius() > temp.getRadius()) 
         return 1; 
}} 

Note the differences between this slide and the next slide. 



public class Circle extends Shape implements  
   Comparable<Circle> { 
   private double radius; 
   public Circle(int x, int y, double r) {/*not shown */} 
   public double getRadius() { return radius; } 
   public int compareTo(Circle temp) { 
      if(getRadius() == temp.getRadius()) 
         return super.compareTo(temp); 
      if(getRadius() < temp.getRadius()) 
         return -1; 
      if(getRadius() > temp.getRadius()) 
         return 1; 
}} 

The CompareTo() Method 

Note the differences between this slide and the previous slide. 



The CompareTo() Method 
// main method 
Circle one = new Circle(50, 50, 5); 
Circle two = new Circle(25, 25, 8); 
Circle three = new Circle(25, 25, 10); 
Circle four = new Circle(50, 50, 5); 
System.out.println(one.compareTo(two)); 
System.out.println(two.compareTo(three)); 
System.out.println(three.compareTo(four)); 
System.out.println(one.compareTo(four)); 

● The first two parameters are the x and y 
coordinates and the last parameter is the radius. 

● The radius is compared first and then the x and y 
coordinates. 

Output 

-1 
-1 
1 
0 



public interface Area extends Comparable { 
 double getArea();   // a method 

declaration 
 double PI = Math.PI;  // a constant 
 

} 

public class Circle implements Area, Comparable { 
 // implementation not shown. 
 

} 

Interfaces 
● A subclass extends only one superclass 

● Java uses single inheritance 
● A subclass implements one or more interfaces 

● This provides the benefits of multiple inheritance 
● An subinterface extends one or more super 

interfaces 



● If a class implements an interface the reference can 
be of the type of the Interface 
o Comparable cir = new Circle(); 

● You can call the compareTo method defined in 
Comparable, but no other methods without a cast 

● This is an example of polymorphism, i.e. the ability 
of the Comparable object to take on multiple forms 

Polymorphism 



Polymorphism 

ArrayList<Comparable> list; 
list = new ArrayList<Comparable>(); 
list.add("zebra"); 
list.add("monkey"); 
list.add("lion"); 
Collections.sort(list); 
System.out.println(list.toString()); 

What is the output? 

● This would sort the list based on the compareTo 
method from String 

● All items in this case need to be the same type 

Output 

[lion, monkey, zebra] 
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