Objects Round 2

AP Computer Science

Classes

-

A class is merely a plan or blueprint for a

possible object
It does not by itself create any objects

. Class == Car

. Object == Toyota Prius
Like Int is a type and 34 is an instance of the

type Int
An object is the actual data you can use in your

code

. Since the class is only a template it can be used
to create many objects of the same type

. Realize that creating a class is really creating a
new data type you can use in your program

. Each object created from a class has its own set
of data and methods

- When designing classes, they contain two kinds
of elements:

. Members (instance variables) - the data
describing the objects (color, age, location)

. Methods - actions either the object can do or
that can be done to the object (move, change
color, get age)

public class Studen#&——————— (Cl|ass definition

{ L. private int age;

1 privaite douHIelEPA «— Jeanee
 private Course APCOmMpSCi ; arianles
- public Student()

{ ¢ Cor_ls_tr_uctor

definition

}
St e R o

{

¢ Method
} definition

Members

. Members (instance variables) are the actual
data inside an object
. They can be primitive types or other object

types
. They are hidden (private) from the outside

world

public class Point

1

private double X;

private double y;

. Please note that instance variables are only
declared at the top of the class

. The assignment happens inside the constructor

. This is a common error of beginners

public class Point

1

private double X;

private double y;

What do private and public mean?

These keywords allow you to specify the scope
or permissions of members and methods
private means only methods from the same
class can access an item

publ 1c means any method can access the
item

Methods

. Methods allow you to do things

. Object methods usually allow you to manipulate
the members (instance variables)

. They are usually visible (publ 1c) to the outside

world

. Methods can be static or non-static
. Only non-static methods can interact with the
members of an object

Static methods can be executed without
creating an object

To call a static method you use class name dot
method name

Non-static methods do not exist before you
create an object of the class

To call a non-static method you use the
reference variable dot method name

. Because members are private, it is common
to use methods to find out what values they are

storing
. A method that only returns the value of a
Instance variable Is called an accessor method

public double getX()
{

}

public double getY()
{

return Xx;

return y;
1

y]

. The toString() method is a very common method
for us to use

. toString() will return the values for all of the
Instance variables for a particular object

. You call toString() by placing the reference
variable name inside a print() or printin()
statement

public String toString()
1

}

return + X + + y;

Point p = new Point(5, 10);
System.out.printin(p);

public class Point {
private double Xx;
private double y;

public Point(double xPos, double yPos) {

X = XPos;
y = YyPos;
by
public String toString() {
return + X + + Y, 510

¥

B

. Because members are private, it is common
to use methods to change their values

. A method that only changes the value of a
Instance variable is called a modifier method

public void setX(double newX)

{
X = newx;
}
public void setY(double newY)
{
y = newyY;

}

. Accessor methods normally start with get

. Modifier methods normally start with set

. This is not required but does make it easy to
find modifier and accessor methods in your

publ*i'g%&mle getX()
{

}

public void setY(double newY)
{

}

return Xx;

y = newyY;

Variable Scope

. Instance variables are the data associated with
each object

. Instance variables are declared as private

. Instance variables are available to every non-

static method in the class

public class Student

{
private Int age;
private double GPA;

. Local variables will either consist of the
parameters you pass into a method, or variables
you declare inside a method

. Local variables are only available inside the
method in which they are declared

public void addNums(int a, Int b)
{

INt answer = 0O;
answer = a + b;
return answer;

B

. The scope of a variable refers to the time when
it Is available for use
. For local variables the scope is the method the
variable is defined In
. For instance variables the scope is the entire
class

public void addNums(int a,

1
}

return a + b;

int b)

Pu

r

blic class Student {

private Int age;

public Student() {
age = 0;
}

public void setAge(int a) {

age = a;

~

age scope

ascope

J

Equivalence testing

. If you have two primitive variables, you use the
== operator

. However, with objects, this will only give you
back true if the two references are pointing at
exactly the same object

. Sometimes this is what you want to know, but
objects can be equivalent in other ways

String sl new String()
String s2 = new String();
1IT(s1 == s2)
System.out.printin();
else
System.out.printin()
1IT(sl.equals(s2))
System.out.printin();
else
System.out.printin()

- In this example, the == operator will say they are
different, but the equals() method will say that they

are the same
- Every object has an equals() method

	AP Computer Science
	Classes
	Templates for objects
	Templates for MANY objects
	Contain members and methods
	Anatomy of a class definition
	Members
	Members are data inside an object
	Declaring instance variables
	Data visibility
	Methods
	Methods are ways to interact with objects
	Static vs non-static methods
	Accessor methods
	toString() method
	toString() example
	Modifier methods
	Modifier & accessor methods
	Variable Scope
	Instance variables
	Local variables
	Variable scope
	Variable scope
	Equivalence testing
	How do you tell if two objects are the same?
	Equivalence confusion

