
AP Computer Science
Objects Round 2

Classes

Templates for objects

● A class is merely a plan or blueprint for a
possible object

● It does not by itself create any objects
● Class == Car
● Object == Toyota Prius

● Like int is a type and 34 is an instance of the
type int

● An object is the actual data you can use in your
code

Templates for MANY objects

● Since the class is only a template it can be used
to create many objects of the same type

● Realize that creating a class is really creating a
new data type you can use in your program

● Each object created from a class has its own set
of data and methods

Contain members and methods

● When designing classes, they contain two kinds
of elements:
● Members (instance variables) - the data

describing the objects (color, age, location)
● Methods - actions either the object can do or

that can be done to the object (move, change
color, get age)

Anatomy of a class definition

Class definition
Instance
Variables

Constructor
definition

Method
definition

public class Student
{ private int age;
 private double GPA;
 private Course APCompSci;

 public Student()
 {
 …
 }

 public int method1(double x)
 {
 …
 }
}

Members

Members are data inside an object

● Members (instance variables) are the actual
data inside an object

● They can be primitive types or other object
types

● They are hidden (private) from the outside
world

public class Point
{
 private double x; // instance
variable
 private double y; // instance
variable

Declaring instance variables

● Please note that instance variables are only
declared at the top of the class

● The assignment happens inside the constructor
● This is a common error of beginners

public class Point
{
 private double x; // instance
variable
 private double y; // instance
variable

Data visibility

● What do private and public mean?
● These keywords allow you to specify the scope

or permissions of members and methods
● private means only methods from the same

class can access an item
● public means any method can access the

item

Methods

Methods are ways to interact
with objects

● Methods allow you to do things
● Object methods usually allow you to manipulate

the members (instance variables)
● They are usually visible (public) to the outside

world
● Methods can be static or non-static
● Only non-static methods can interact with the

members of an object

Static vs non-static methods

● Static methods can be executed without
creating an object

● To call a static method you use class name dot
method name

● Non-static methods do not exist before you
create an object of the class

● To call a non-static method you use the
reference variable dot method name

Accessor methods
● Because members are private, it is common

to use methods to find out what values they are
storing

● A method that only returns the value of a
instance variable is called an accessor method

public double getX() //accessor for x
{
 return x;
}

public double getY() //accessor for y
{
 return y;
}

toString() method

● The toString() method is a very common method
for us to use

● toString() will return the values for all of the
instance variables for a particular object

● You call toString() by placing the reference
variable name inside a print() or println()
statement

public String toString() //toString() in Point
{
 return "" + x + " " + y;
}

//main method
Point p = new Point(5, 10);
System.out.println(p);

toString() example

public class Point {
 private double x;
 private double y;

 public Point(double xPos, double yPos) {
 x = xPos;
 y = yPos;
 }

 public String toString() {
 return "" + x + " " + y;
 }
}

Output

5 10

Modifier methods
● Because members are private, it is common

to use methods to change their values
● A method that only changes the value of a

instance variable is called a modifier method

public void setX(double newX) //modifier for x
{
 x = newX;
}

public void setY(double newY) //modifier for y
{
 y = newY;
}

Modifier & accessor methods
● Accessor methods normally start with get
● Modifier methods normally start with set
● This is not required but does make it easy to

find modifier and accessor methods in your
program

public double getX() //accessor for x
{
 return x;
}

public void setY(double newY) //modifier for y
{
 y = newY;
}

Variable Scope

Instance variables

● Instance variables are the data associated with
each object

● Instance variables are declared as private
● Instance variables are available to every non-

static method in the class

public class Student
{
 private int age; //instance variable
 private double GPA; //instance variable

 //rest of Student class.....
}

Local variables
● Local variables will either consist of the

parameters you pass into a method, or variables
you declare inside a method

● Local variables are only available inside the
method in which they are declared

//ints a & b are both local variables
public void addNums(int a, int b)
{
 //int answer is a local variable
 int answer = 0;
 answer = a + b;
 return answer;
}

Variable scope

● The scope of a variable refers to the time when
it is available for use

● For local variables the scope is the method the
variable is defined in

● For instance variables the scope is the entire
class

//the scope of a and b is the method addNums
public void addNums(int a, int b)
{
 return a + b;
}

Variable scope
public class Student {

 //instance variable
 private int age;

 //default constructor
 public Student() {
 age = 0;
 }

 //modifier method
public void setAge(int a) {

 //a is a local variable availabe in
setAge
 age = a;
 }

age scope

a scope

Equivalence testing

How do you tell if two objects
are the same?

● If you have two primitive variables, you use the
== operator

● However, with objects, this will only give you
back true if the two references are pointing at
exactly the same object

● Sometimes this is what you want to know, but
objects can be equivalent in other ways

Equivalence confusion

● In this example, the == operator will say they are
different, but the equals() method will say that they
are the same

● Every object has an equals() method

String s1 = new String("identical");
String s2 = new String("identical");
if(s1 == s2)
 System.out.println("Same!");
else
 System.out.println("Different!");
if(s1.equals(s2))
 System.out.println("Same!");
else
 System.out.println("Different!");

	AP Computer Science
	Classes
	Templates for objects
	Templates for MANY objects
	Contain members and methods
	Anatomy of a class definition
	Members
	Members are data inside an object
	Declaring instance variables
	Data visibility
	Methods
	Methods are ways to interact with objects
	Static vs non-static methods
	Accessor methods
	toString() method
	toString() example
	Modifier methods
	Modifier & accessor methods
	Variable Scope
	Instance variables
	Local variables
	Variable scope
	Variable scope
	Equivalence testing
	How do you tell if two objects are the same?
	Equivalence confusion

