
AP Computer Science
Arrays

Credit: Slides are modified with permission from Barry Wittman at Elizabethtown College

This work is licensed under an Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Arrays

Why Arrays?

● Variables are nice

● Loops are great

● Without a way to talk about a set of variables,

we cannot get the full potential out of a loop

● Enter: arrays

Definition of an Array

● An array is a set or list of data that is the same
type: int, double, String, etc.

● The size of the array is fixed when you create it

meaning it cannot adjust once it is created

● This is similar to a String if you think of how it

contains a list of chars and the String is

immutable

Array Syntax

Declaration of an Array

type[] name;

● Like any variable declaration, but with []

int[] list;

● To declare an array of a specified type with a

given name:

● Example with a list of type int:

Instantiation of an Array

● When you declare an array, you are creating a

variable that can hold an array
● At first, it holds nothing, also know as null

● To use it, you have to instantiate an array,

supplying a specific size:

int[] list; // declaration

list = new int[10]; // instantiation

● This code creates an array of 10 ints

Arrays are Objects

int[] arr;

list null

list

arr = new int[10];

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

● Declares array, but assigned to null

● Instantiates an existing array

Accessing Array Elements

● Once you have indexed into an array, that variable

behaves exactly like any other variable of that type

● Indexing starts at 0 and stops at 1 less than the

length

● The index can be any number, variable, or

expression that equates to an integer

list[9] = 142;

System.out.println(list[9]);

● You can access an element of an array by using

the index inside brackets

Assigning an Array Element

int[] list = new list[10];

list[0] = 73;

list[4] = 2;

list[9] = 14;

System.out.println(list[0]);

System.out.println(list[4]);

System.out.println(list[7]);

System.out.println(list[9]);

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Array Before:

73 0 0 0 2 0 0 0 0 14

0 1 2 3 4 5 6 7 8 9
Array After:

Output

73

2

0

14

Length of an Array

● You can use the length member to find out

how many elements are in the array
● Please note the difference from the length()

method for Strings and the length member for

Arrays

● One is a method and one is a member

int[] list = new int[42];

int size = list.length;

System.out.println("List has " + size +

 " elements");

Output

42

Automatic Initialization

● For other types, including Strings, each index

in the array must be filled explicitly

Type Value

int 0

double 0.0

char '\0'

boolean false

● When you create an int, double, char, or

boolean array, the array is automatically filled

with certain values

Explicit Initialization

● Or, a loop could be used to set all the values:

String[] days = {"Monday", "Tuesday",

"Wednesday", "Thursday", "Friday",

"Saturday", "Sunday"};

String[] numbers = new String[100];

for(int i = 0; i < numbers.length; i++)

 numbers[i] = "" + (i + 1);

● Explicit initialization can be done with a list:

Connection to for-loops

for loops + arrays = power

● Arrays are a fixed size list of a single kind of

data
● A for loop is ideal for iterating over every item

and performing some operation
● for loops and arrays will come up again and

again

for loop going through an array

● Using the length parameter we do not

need to know how big the array is ahead

of time

int[] list = {1, 2, 3, 4};

for(int i = 0; i < list.length; i++)

{

 System.out.print(list[i] + " ");

}

● Here is an array of ints called list

● We can use a for loop to go through the array

Output

1 2 3 4

for loop for summing an array

● Using the length parameter we do not need to

know how big the array is ahead of time

int sum = 0;

int[] list = {8, 5, 3, 7, 2};

for(int i = 0; i < list.length; i++)

{

 sum += list[i];

}

System.out.println(sum);

● Here is an array of ints called list

● We can use a for loop to sum up those ints

Output

25

for each loop

for each loop

● There is a variation of the for loop called the for

each loop

● This loop goes through some list of items

● In this case the variable x stores the actual

value of an array element

int[] list = {1, 2, 3, 4};

for(int x : list)

{

 System.out.print(x + " ");

}

Output

1 2 3 4

for each loop

● Inside the loop setup you need to define a
temporary variable, in this case it is x

● The data type for the variable must match the type

of data stored in the array
● Then you have a : followed by the array you want

to go through

double[] list = {2.0, 5.0, 3.0};

for(double x : list)

{

 System.out.print(x + " ");

}

Output

2.0 5.0 3.0

for each loop

● To use the for each loop to go through each

character in a String, you need a method to

convert the String to an array of chars

● The toCharArray() method does this

String word = "hello";

for(char x : word.toCharArray())

{

 System.out.print(x + " ");

}

Output

h e l l o

Array Examples

Array Swap

● Swapping the values of two variables is a

fundamental operation in programming

● It is going to become more important in arrays

because now the order of variables has become

important

● The simplest way to swap two variables involves

using a third variable as a temporary location

Swap Code

● Here is an example of swapping two ints in an

array of ints called arr

int[] arr = {8, 3, 6};

int temp;

temp = arr[0];

arr[0] = arr[2];

arr[2] = temp;

System.out.println(arr[0]);

System.out.println(arr[2]);

Output

6

8

Why the Third Variable?

● Why do we need the temporary variable?

● What would the output be from the code below?

int[] arr = {8, 3, 6};

arr[0] = arr[2];

arr[2] = arr[0];

System.out.println(arr[0]);

System.out.println(arr[2]);

Output

6

6

● Without the temporary variable we lose the

value of one of the array elements

Shuffling Cards

● Using the swap code, we can do a random shuffling

of a deck of cards

● To do so, we go through each element of the array,

and randomly swap it with any of the later elements

int n = 52;

for(int i = 0; i < n; i++)

{

 exchange = i+(int)(Math.random()*(n-i));

 temp = deck[i];

 deck[i] = deck[exchange];

 deck[exchange] = temp;

}

Searching

● Searching through an array is an important

operation

● The simplest way to do so is a linear search:

check every element in the array

● Searching and sorting are really key to all kinds

of problems

Searching Example

● This example goes through the array and finds

the first occurrence of 4

● You could find the last occurrence by starting at

the length-1 and going to 0

int[] arr = {8, 3, 4, 6};

for(int x = 0; x < arr.length; x++)

{

 if(arr[x] == 4)

 return x;

}

Output

2

Counting Occurrences

● This example goes through and counts the
number of 4's located in arr

int[] arr = {8, 3, 4, 6, 4, 9, 4};

int count = 0;

for(int x = 0; x < arr.length; x++)

{

 if(arr[x] == 4)

 count++;

}

System.out.println(count);

Output

3

Removing Occurrences

● This example goes through and removes any occurrence of

4
int[] arr = {8, 3, 4, 6, 4, 9, 4};

int count = 0;

for(int x = 0; x < arr.length; x++){

 if(arr[x] == 4)

 count++;

}

int[] newarr = new int[arr.length-count];

int i = 0;

for(int x = 0; x < arr.length; x++){

 if(arr[x] != 4){

 newarr[i] = arr[x];

 i++;

 }

}

System.out.println(Arrays.toString(newarr));

Output

[8, 3, 6, 9]

Remember the array

cannot be resized so we

need to create a new array

Arrays.sort()

● We will cover sorting in detail later in the course

● Here is how you can sort an array

● You will need to add this import statement

int[] list = {9, 4, 7, 2};

Arrays.sort(list);

System.out.println(Arrays.toString(list));

import java.util.Arrays;

Output

[2, 4, 7, 9]

Arrays.toString()

● You have already seen toString() throughout

the presentation

● The Arrays.toString() method returns a string of

the array that is passed in as an argument

● You will again need this import statement

int[] list = {9, 4, 7, 2};

System.out.println(Arrays.toString(list));

import java.util.Arrays;
Output

[9, 4, 7, 2]

Common Pitfalls with Arrays

Un-initialized Arrays

● Remember, you get no initialization with arrays
of Strings

● If you try to access an non-existent element, the

world will explode

int String[] array = new String[50];

String s = array[42]; // works fine

int size = s.length(); // destroys world

Array Index Errors

● Accessing an element of an array that does not

exist will kill your program

int[] numbers = new int[100];

numbers[103] = 5; //crash

System.out.println(numbers[-3]);//crash

System.out.println(numbers[99]);//okay

for(int i = 0; i <= 100; i++)

 numbers[i] = i; //crash when i == 100

